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SUMMARY

Numerical forward modelling of transient electromagnetic (TEM) fields in topographically demanding terrain
is a rather challenging task but inevitable to identify reasonable measurement configurations and to correctly
interpret acquired field data when investigating mountainous regions. Since the propagating electromagnetic
fields change with time and space, an adaptively refined grid would ideally be time-dependent, too. Gener-
ating large unstructured tetrahedral grids tailored manually to each specific time-step is, however, very time
consuming. Moreover, the system matrix also changes with time causing additional numerical work in the so-
lution process. We tackle both problems by using a very efficient Krylov-subspace method which projects the
system matrix onto a low-dimensional space and, therefore, enables us to evaluate the solution for any given
time. Additionally, we propose an adaptive approach including hanging edges within our modelling domain.
With this, an initial mesh is refined according to the requirements of the propagating electromagnetic field. The
development is driven by the application of TEM at volcanic sites. There is an enormous volcanological interest
in magmatic pathways and hydrothermal systems within volcanic structures aiming to understand processes
occurring prior to a volcanic eruption. Therefore, we apply our TEM simulation routine to a model of Stromboli
volcano, Italy, created from a digital elevation model (DEM).
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INTRODUCTION

Numerical modelling using finite elements (FE) is
a common tool in geoelectromagnetics. Its accu-
racy is strongly affected by the underlying mesh
as has been vividly demonstrated by the work of
Schwarzbach (2009). Several approaches exist
to generate an appropriate mesh: Usually, an ex-
perienced user sets up an a-priori refined mesh
with high resolution in the vicinity of the receiver
and transmitter locations. On the other hand, a-
posteriori error estimators are used to quantify the
discretization error associated with a specific mesh,
which has been proposed by, e.g., Ren et al (2013).
In frequency-domain modelling the fineness of the
mesh is also related to the frequency. Consequently,
the mesh has to be a function of time in time-domain
modelling. We therefore suggest to create a series
of meshes adapted to the individual time step. This

is usually prohibitively expensive but becomes feasi-
ble with the Krylov subspace technique we are using
here. In order to tailor the mesh to specific times in
the TEM forward problem, we use an extension of
the hanging node approach on Nédélec elements.
The refinement routine guided by an error indicator
can be applied to a DEM derived topographic model.
Here, we apply our technique to a model of Strom-
boli volcano, Italy.

MATHEMATICAL BACKGROUND

TEM utilizes the turn-off of a DC current in a usu-
ally square loop on the Earth’s surface to induce
eddy currents in the underground decaying in inten-
sity and expanding in space. They can be modeled
by solving the field equation for the electric field E
derived from Maxwell’s equations. The TEM mea-
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surand, a normalized temporal variation of the mag-
netic flux density at the Earth’s surface, is then ex-
tracted using Ampère’s law ∂tB = ∇×E.

Electric field equation

We state the time domain formulation of transient
electromagnetic induction in terms of the electric
field E as an initial-boundary value problem (e.g.
Afanasjew et al, 2013; Börner et al, 2008, 2015)

∇× (µ−1∇×E)+σ∂tE = 0 on Ω× R+, (1a)

E|t=0 = σ−1j on Ω, (1b)
n×E = 0 on ∂Ω× R+, (1c)

where µ = µ0 represents the magnetic permeability
of free space, σ = σ(x) the spatially varying elec-
trical conductivity, and j the source current density
associated with a current shut-off at time t0.
The spatial discretization on an unstructured tetra-
hedral grid using curl-conforming Nédélec elements
yields an ODE initial value problem reading

∂tu(t) +Au(t) = 0, t ∈ R+, (2a)
u(0) = b, (2b)

where u is the coefficient vector of the FE approx-
imation of E with respect to the Nédélec basis at
times t > 0 and b denotes the vector of initial values.
The matrix A includes both the spatial approxima-
tion of the curl-curl operator and the spatially vary-
ing conductivity σ(x).
Now, we find a solution to Equation 2 using a matrix
exponential function

u(t) = e−tAb, (3)

which can be evaluated by developing a rational
Arnoldi approximation at any given time t > 0
(Afanasjew et al, 2008; Börner et al, 2015).

Hanging edge approach

Adaptive mesh refinement using hanging nodes
for octree finite volume discretizations has already
been described by, e.g., Haber et al (2007). How-
ever, records are scarce for extending the approach
to FE simulations based on Nédélec elements.
In Figure 1, a uniformly refined tetrahedron is de-
picted, where the original vertices enumerated 1-4

are indicated in black, while the vertices constructed
within the refinement process are denoted by red
numbers. When refining adjacent tetrahedra, new
degrees of freedom are generated. However, if at
least one adjacent tetrahedron is not refined, this
causes hanging nodes and, consequently, hanging
edges. Therefore, hanging edges only appear in the
outskirts of a refined area, adjoint to the original (i.e.
unrefined) mesh.
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Figure 1: Uniformly refined tetrahedron, black dig-
its enumerate the original vertices of the unre-
fined tetrahedron, red digits indicate vertices
emerging from the refinement process.

Uniform refinement results in bisecting every sin-
gle edge. Consequently, a set of geometrical con-
straints can be derived from the original, large
edges (”parents”) on the newly created, small edges
(”children”), where edge e⃗ij denotes the edge link-
ing vertices i and j (cf. Figure 1). The constraints
derived from edge e⃗12 read

e⃗15 = 1/2 e⃗12 and e⃗25 = −1/2 e⃗12. (4)

Furthermore, the new edges emerging on the front
facet of the depicted tetrahedron can be constrained
using

e⃗57 = 1/2 e⃗24, e⃗59 = 1/2 e⃗14 and e⃗79 = 1/2 e⃗12. (5)

In such a manner, each new edge can be con-
strained, except for an edge created inside the tetra-
hedron, such as edge e⃗78 in Figure 1. Since the lat-
ter edge is embedded in the surrounding tetrahedra,
it is a complete edge in the mathematical sense.
The stated constraints are mapped to the FE de-
grees of freedom on each refined tetrahedron and
incorporated into the system matrix using the work
of Abel and Shephard (1979).
Note, that the constrained degrees of freedom are a
linearly interpolated and, consequently, do not yield
additional information. The advantage of the hang-
ing edge approach is the ability to refine a mesh
straightforwardly without the need to treat hanging
nodes at the level of grid generation.
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RESULTS

In order to demonstrate the use of adaptive mesh re-
finement including hanging edges, we consider two
applications common in 3D modelling: firstly, au-
tomatic refinement around the transmitter location
and secondly, time-dependent tracking of the elec-
tric field in the subsurface.

Figure 2: Unrefined (black) and refined (red) grid
at the transmitter location (top) and Ex at time
t1 = 10−6 s in the unrefined (central) and re-
fined mesh (bottom).

Homogeneous Halfspace

When modelling in the time domain, the fineness of
the initial value condition severely affects the solu-
tion. Therefore, we automatically refine the region
around the transmitter location within a homoge-
neous halfspace model with electrical conductivities

σair = 10−9 S/m and σEarth = 10−3 S/m based on
the solution Ex at time t = 10−6 s shown in Figure
2. In the uppermost panel, one can clearly observe
hanging nodes where the refined mesh (red colour)
borders the original mesh (black colour). As can be
seen in the central and lowermost subplot, respec-
tively, the solution on the fine mesh (lowermost fig-
ure) exhibits a smoother Ex distribution in contrast
to the rather coarse solution on the original mesh
(central figure). Due to the higher resolution in the
initial step, the accuracy of the solution at later times
is also raised.

Figure 3: Tracking Ex in the underground using
adaptive mesh refinement at times : t1 =
10−6 s, t2 = 10−5 s, t3 = 10−4 s (from top to
bottom).

Application to a DEM

As a second application for automatic adaptive re-
finement, we consider a homogeneous model of
Stromboli volcano, Italy, derived from a DEM. Due
to the steep topography, the electrical conductivities
are set to σair = 10−6 S/m and σEarth = 10−3 S/m
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in order to maintain numerical stability at the Earth-
air interface. An experienced user would generate
a mesh with appropriate fineness in the vicinity of
the receiver location, the transmitter location and at
the Earth-air interface mapping the topography to a
certain level of detailedness. However, additional
refinement in the underground is necessary in the
vicinity of conductivity anomalies and for accurately
resolving the temporal behaviour of the electric field.
In Figure 3, the tracking of Ex using the subset Tref
with

Tref = { T ⊂ Ω|Ex > 1/2max(Ex)∨
Ex < 1/2min(Ex) }

is visualized at times t1 = 10−6 s, t2 = 10−5 s and
t3 = 10−4 s. Note that, due to the nature of unstruc-
tured meshes, the interface of the clipped model
may contain a variety of slices through tetrahedra
which need not necessarily be triangular. The time-
dependency of the underlying mesh is clearly visi-
ble, the fine regions follow the extrema of Ex. Ap-
parently, the region, in which Ex is greater or less
than half of its maximum/minimum value, respec-
tively, widens with increasing time. This is in accor-
dance with the diffussive nature of electromagnetic
fields.

CONCLUSIONS

3D simulations of electromagnetic fields are highly
useful to image electromagnetic fields in the under-
ground. However, the accuracy of the results de-
pends on the underlying mesh. In order to enhance
the distribution of degrees of freedom we propose
a strategy of time-dependent adaptive mesh refine-
ment using hanging edges based on the extrema
of the electric field. Future investigations will focus
on the quantitative description of the refinement pro-
cess.
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